Exercice 1

Quelle est la longueur d'onde d'un photon émis durant une transition entre n = 5 à n = 2 dans un atome d'hydrogène ?

Exercice 2

Dans un atome d'hydrogène, un électron est situé sur une orbite n = 2. Un photon dont la longueur d'onde λ est de 656 nm provoque sa transition vers une autre orbite. Déterminer le niveau de cette orbite.

Exercice 3

La configuration électronique d'un atome neutre est la suivante :

$$1s^2 2s^2 2p^6 3s^1 3p^5$$

Quel est le numéro atomique de cet élément ?

Dans quel état de configuration cet atome se trouve-t-il?

Combien d'électrons célibataires contient-il dans cette configuration ?

Quelles valeurs les nombres quantiques n et ℓ prennent-ils pour les électrons $3p^5$?

Exercice 4

Dans l'atome de zinc (Zn, numéro atomique 30) à l'état fondamental, combien d'électrons sont caractérisés par le nombre quantique magnétique $m\ell = +1$?

Exercice 5

A l'état fondamental, indiquer le nombre d'électrons célibataires pour les espèces chimiques suivantes : N, Ar, Sr²⁺

Exercice 6 (QCM)

1) Indiquer quelle(s) est (sont) les informations correctes pour un atome polyélectronic	que
a) Les quatre nombres quantiques n, l, m_l, m_s définissent une orbitale b) Toutes les couches acceptent le même nombre d'électrons c) L'énergie d'une orbitale est définie par les nombres quantiques n et l d) Les sous-couches $2p$ et $3p$ peuvent contenir (au maximum) le même nombre d'électrons	
2) Indiquer, en considérant l'état fondamental, la ou les affirmations correctes dans la suivante.	liste
a) 5 électrons définis par $n=2$ et $l=1$ constituent un doublet électronique et 3 électrons célibataires b) Les électrons célibataires de Mn ont tous un nombre quantique m_l différent c) Pour l'atome de Hg, il y a 3 électrons caractérisés par $l=2$, $m_l=-2$ et $m_s=+1/2$ d) L'atome de Mg possède deux électrons célibataires	